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The problem 
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with the conditions 

i oo 
Pv2~rdr= t '  S Pv~(T- -  T ~ ) r d r =  1. ( 3 )  

o o 

occurs in the investigation of a high-temperature jet flow out of a cylindrical orifice in 
a boundary-layer approximation. Here r, zR are cylindrical coordinates (r and z are the 
internal coordinates in an asymptotic expansion in the small parameter R-I); R = pm~Im/2~/Dm 
is the analog of the Reynolds number; v z and vrR are the axial and radial velocity components; 
T, temperature; p, density; and Pr = Cpm~m/Im, the Prandtl number. The temperature scale 
Tm, density 9m, specific heat at constant pressure cpm, heat conductivity Im, dynamic vis- 
cosity Dm, total momentum flux Izm, total enthalpy flux I2m: 

~o 
[ i  m 9 2 2 = - n o ~ V ~ L ~  j pv~rdr, 

I2m = 2ncv..o.~T,~V,~L~ ~ 9v= (T - -  Too) rdr 
0 

are considered given. Selected, respectively, as velocity and length scales are V m = Cpm~ 

TmI1m/lam, Lm = 12m/(cpmTm~. 

As T~ + 0 the boundary conditions (2) and the integral conditions (3) can be rewritten 
in the form [i] 

ro(z) to(z) 

J j' pv~rdr == 1, vzrdr = t ,  /Jz = iF ~ 0 f o r  r - +  r o (z), 
o o 

(4) 

where the integrals are written down under the assumption of their existence, and r0(z) is 
the interfacial surface separating the high-temperature compressed gas flow from the cold 
incompressible gas flow with constant temperature. Let us note that the interfacial surface 
cannot exist in a certain range of parameters and then r 0 § ~ should be presumed in (4). 
As T~ § 0, let us construct the self-similar solution for the problem (i), (4) 

�9 7 '  - -  P r  I- f I x 2 ' 2 P r / ( P r - I )  

�9 "a ) j' 
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, - r / V F ,  x~ 8 (Pr  + 1)/[(3 - -  Pr)  (P r  - -  I)1 , ( 5 )  

w h i c h  i s  s u i t a b l e  f o r  t h e  s e m i - i n f i n i t e  i n t e r v a l  r ( 0  < r < ~ )  f o r  P r  < 1 a n d ,  a s  i s  s h o w n  i n  [ 1 ] ,  i s  

s u i t a b l e  i n  t h e  f i n i t e  i n t e r v a l  0 ~ r < r 0 ( z )  f o r  1 ~ P r  < 3 .  T h e  s o l u t i o n  ( 5 )  b e c o m e s  u n -  
s u i t a b l e  f o r  P r  > 3 s i n c e  t h e  s e l f - s i m i l a r i t y  c o n s t a n t  f o r  t h e  v e l o c i t y  i s  o b t a i n e d  u n d e r  
t h e  a s s u m p t i o n  o f  e x i s t e n c e  o f  i n t e g r a l s  ( 4 )  w h i l e  f o r  P r  ~ 3 t h e  f i r s t  i n t e g r a l  i n  ( 4 )  d o e s  
not exist. 

For Pr > 3 we seek the solution of the problem (i), (4) in the form 

v~ (r, z) = z tO (x) ,  T = z - l O  (x) ,  /)r ---~ Z ~r 1 v (Z),  

~r 
r = z x ,  a w  = ~ 2 a r .  

( 6 )  

Here w, e, v, and x are self-similar vairabies; ~w and ~r are self-similarity constants, 
and the existence of the second integral in (4) is assumed in establishing relations between 
the self-similarity constants. Substituting (6) into (i) and (4), we obtain 

1 --~ (xto')' = - ~  lvw' + w (%u, - -  a~x#)] ,  

�9 ~ o ] + ( ~ w + l ) - ~ - - - ~ , x  - 6 -  = 0 ,  

t (xO')' = Pr 0 - I  [vO' -k to (-- 0 - -  a,x~')] ,  - Z  

W' ~- O' = P = 0 f o r  X = O, tO = 0 = 0 f o r  X = X o 

(X o i s  t h e  s e p a r a t i o n  p o i n t  r e l a t e d  t o  t h e  i n t e r f a c i a l  s u r f a c e  b y  t h e  f o r m u l a  r 0 
Introducing the new variable 

(7) 

= z~rx0). 

s = Pr(v - a , x w ) ,  

we convert the problem (7) to 

p-PS~ + a= 0 ' (xs)' --  SO'o Pr  w, 

t ( x O ' ) '  sO' P r  to, u;' O' = 0 = = 8 =  0 f o r  x = O ,  to = 0---~ 0 f o r  x =  x 0. 

( 8 )  

( 9 )  

Since the equations and initial conditions for (9) agree in s and 8', then 

= o ' .  (lO) 

Therefore, the order can be reduced in problem (9), and by using (i0) it takes the form 

t__ (xto,), = o',,, ' ,,~ z p-bT-b- + a ~  0 (xO') '  - 0'~ P r  w,  
' o ( 1 1 )  

W' = O' ~- 0 f o r  X = O, W = 0 = 0 f o r  x = x 0. 

Let us note that the solutions of problem (ii) are invariant to the transformation 

w~C,w, O--+GO, , ~1 ~ z (12) 

(C I and C 2 are arbitrary constants). This permits giving the initial conditions, say 

w ~ @ = i for z = 0, (13) 

as nontriviality conditions. Solving problem (ii), (13) and using the invariant properties 
(12), the solutions can be normalized in conformity with the integral conditions (4) or in 
some other manner. 

It could be expected that the solutions of problem (ii), (13) exist for not every value 
of the self-similarity constants for the velocity ~w (i.e., ~w is the analog of an eigenvalue) 
but it turns out in a numerical computation that ~w takes on a set of values from the inter- 
val ~we < ew < ~" In order to formulate the condition from which to start to be able to 
select a unique value of C~w, we examine solutions of the problem (ii), (13) in the neighborhood 
of the separation point 
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= A ( x  o - -  x)% 0 := B ( x  o - -  x)  b. ( 1 4 )  

Substituting (14) into (Ii) we have 

B [ a ( a - -  4 ~ ) - - a b P r  - 1 ] - A ~  w ---- 0, B b - - A  Pr  = 0, b = a + 2 .  ( 1 5 )  

E q u a t i o n s  ( 1 5 )  a r e  l i n e a r  a n d  h o m o g e n e o u s  i n  t h e  u n k n o w n s  A a n d  B. E q u a t i n g  t h e  d e t e r m i n a n t  
of system (15) to zero, we obtain 

Pr + 2 + %~ 1 ~/~i-~r2 -b (4 @ 10aw) P r  + (a~ - -  2) 2, 
a - - -  2 ( P r - - I )  ----- 2 ( P r - - l )  ( 1 6 )  

B =  --Pr A. 
a~72 

It follows from numerical computations of the problem (11), (13) that its solutions in the 
neighborhood of the separation point behave in conformity with (14), (16), where the minus 
sign must be taken for the square root in the formula for a in (16). 

Therefore, a continuum of solutions (6) satisfying system (i) and boundary conditions 
(i) and (4) exists. It is evident from physical considerations that the viscosity hinders 
flows with high velocity gradients (the equivalent can be shown for the influence of heat 
conductivity on the temperature gradient). Consequently, we formulate the following prin- 
ciple as the selection criterion for the solutions: out of the mathematically possible high 
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temperature flows only that for which the velocity gradient (or equivalently in this case, 
the temperature gradient) is minimal at the interfacial surface is realized physically. In 
connection with the fact that the velocity gradient on the interfacial surface is unlimited- 
ly high, it would terminologically be stricter to require the minimum of the vel0city-gradi- 
ent singularity and the minimum of the singularity of any derivative that tends to infinity 
for the temperature. However, the physical content is reflected best in the terminology 
"minimal gradient" (it should not be examined on the interfacial surface itself but in an 
arbitrarily nearby neighborhood), and even more so since situations apparently exist when 
neither the velocity (or temperature) gradient nor its derivative in the neighborhood of 
the interfacial surface have singularities. The minimal gradient principle is used for the 
problem under consideration only if integrals of the form (4) do not exist. 

The results from (16) and numerical computations that for Pr > 3 the velocity gradient 
at the interfacial surface is minimal (a is maximal) if 

a~  ~ 2 - - 5 P r  + V 2 4 P r ( P r  -- t ) ,  

the value of a is here determined from the formula 

( 1 7 )  

a - ]/r6Pr/(Pr - -  t ) - -  2, ( 1 8 )  

i . e . ,  t h e  m i n i m a l  g r a d i e n t  p r i n c i p l e  i s  r e a l i z e d  a s  t h e  m u l t i p l i c i t y  c o n d i t i o n  f o r  t h e  r o o t  
a in (16). Within the framework of the present investigation the minimal gradient principle 
denotes the selection of the limit value of aw below which the solution of problem (ii), (13) 
will already not exist from the mathematical viewpoint. There results from (~8) that a < 1 
for Pr > 3, i.e., the velocity gradient at the interfacial surface is unlimitedly large. 
In connection with the multiplicity of the root a in (16) for system (ii), both solutions of 
the form (14) and the solutions w = A(x 0 - x) ~ in (x 0 - x), @ = B(x 0 - x) b in (x 0 - x) are 
applicable, and it is difficult to establish numerically which will be realized near the se- 
paration point. 

Numerically constructed solutions of problem (ii), (13) and (17) are displayed in Fig. 
1 for an arbitrary velocity and temperature for different Pr, while the solution for the 
transverse velocity v, determined by using (i0) and (8), is displayed in Fig. 2. As Pr in- 
creases, the longitudinal velocity profile becomes more inflated, the high-temperature boun- 
dary-layer thickness x 0 diminishes, and the transverse velocity component increases. As 
Pr + ~ by formulating the limit process in the form 

t = ~ V ~ ,  (19) 

w h i c h  i s  f i x e d  a s  P r  + ~ ,  we c o n s t r u c t  t h e  a s y m p t o t i c  e x p a n s i o n  

w(x, Pr)  = W o ( t )  + . . . .  O(x, Pr)  =: Oo(t) -i- . . . ,  

~z~,,(Pr) = c%Pr - /  . . . .  xo(Pr ) : :  toPr  -1/ '  -[- ... (20)  

[a 0 = -5 + ~(17)]. Substituting (20) into (Ii), (13), we obtain in the limit (19) 
the zeroth approximation in Pr -I 

t d dw 0 Wo '1 d dO o t IdO~ \~ 

r <Tt ) - , , 'o ,  
dw o dO o 
d T =  d-~ = 0 '  ~*'o = 0 0 =  t f o r  t = O, ll' o = 00 = 0 f o r  t = t o . 

in 

(21) 

The solutions of problem (21) are shown in Fig. 3. Therefore, the fullness of the profile 
w is bounded by the function w 0 as Pr ~ ~. 

A numerical experiment was performed to confirm the minimal gradient principle: the 
partial derivative problem (i), (2) was supplemented by the necessary initial conditions 
for z = z0 and was solved numerically (in finite differences) for sufficiently small values 
of T~. These computations showed that beyond the dependence on the initial conditions the 
solutions became self-similar quite rapidly as z grew, where the self-similarity constants 
satisfied the minimal gradient principle with sufficient accuracy. 

The Runge-Kutta method was used for numerical computations of problems with ordinary 
differential equations and the factorization method with iterations for the partial differen- 
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tial problems, and the idea of perturbation methods [2] for the construction of the asymptotic 
expansions. 

. 
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STABILITY OF THERMOCAPILLARY MOTION IN A CYLINDRICAL LAYER 

E. A. Ryabitskii UDC 532.516:536.24.01 

The stability of thermocapillary motion in a planar layer and a liquid cylinder was 
studied in [i, 2]. In the present study we will consider the stability of thermocapillary 
convection in a cylindrical layerwith an undeformed free surface. The effect of the ratio of 
cylinder radii on motion stability is considered. It is shown that for axisymmetric dis- 
turbances a~ certain values of the problem parameters, increase in relative thickness of the 
inner cylinder leads to reduction in stability. 

i. We will consider a cylindrical layer of viscous thermally conductive liquid bounded 
by solid inner and free outer surfaces in the absence of gravity. We introduce a cylindrical 
coordinate system with the z axis directed along the cylinder directrix. The equation of the 
solid boundary is r = r 0. We assume that the free surface is cylindrical (r = r i) and un- 
deformed. The temperature dependence of the surface tension coefficient is given by ~ = 
o0 - K ( 0  - 0 0 ) .  

L e t  t h e  f r e e  s u r f a c e  be h e a t e d  by a law 0 B = -Az (A i s  a s p e c i f i e d  c o n s t a n t  v a l u e ) .  
Then t h e  s t e a d y - s t a t e  a x i s y m m e t r i c  t h e r m o c a p i i l a r y  m o t i o n  which  d e v e l o p s  due t o  chang e  in  
s u r f a c e  t e n s i o n  w i l l  be d e s c r i b e d  by t h e  e q u a t i o n s  

u = v  = 0,  w = B ~ ( . ~ 2 - - d  2 ) + B z i n ( ~ / d ) ,  Pn----4B~, 
0 == - - q ' - -  M a P r  [B~ (.$, _ t ) / 4  - -  (dZBi + B.~_ ~- In dB2) (~  2 - -  t )  ~- 

--/~.~(~ § d~-)tn g -i- Bzd 4 In ~]/4, 
(l.i) 

where the constants B I = (1 - d = + 21nd)[(l - d2)(3 - d 2) + 4ind] -i, B 2 = (1 - d2)2[(l - 
d2)(3 - d 2) + 4 ind] -i are found from the conditions of adhesion and closed flow 

1 

' ~ ( ~ )  d~ = O. ( 1 . 2 )  

Here and below, ~ = r/ri; q = z/ri; d = r0/r i < 1; Ma = ri2KA/pv 2 is the Marangoni number; 
Pr = ~/X, the Prandtl number; Bi = ~ri/i , the Blot number; v and X, kinematic viscosity 
and thermal diffusivity coefficients; I and 6, thermal conductivity and interphase exchange 
coefficients; p, density. For units of length, time, velocity, temperature, and pressure 
we take ri, ri2/vMa, vMa/ri, Ari, and pv2Ma2/ri 2, respectively. 

As d + 0 the motion of Eq. (i.i) transforms to thermocapillary flow of a completely 
liquid cylinder: u = v = 0, w = (~2 _ 0.5)/2, Pn = 2, @ = -n - MaPr(l - ~2)2/32, the sta- 
bility of which was studied in [2]. In [3] a stability study was performed for axisy~etric 
disturbances of a motion with logarithmic velocity profile which did not satisfy closure 
condition (1.2). 
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